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Abstract

The speed of response of commercial Coriolis meters to a step change in mass flow rate corresponds to a time

constant which may range from 0.1 s to several seconds. This response is a result both of the dynamic response of the

physical components of the meter and of the electronics and the computational algorithms used to convert that dynamic

response into an estimate of the mass flow rate. A comprehensive investigation of the dynamic response is presented

with a view to establishing the ultimate limits of the overall meter response. Attention is initially concentrated on a

simple straight tube meter and analytical solutions are presented for the response to a step change in flow rate both for

an undamped meter and for a meter with internal damping. These results are compared with results from a finite

element model of the same meter and then the finite element modelling is extended to geometries typical of commercial

meters. Finally, representative results are presented from an experimental study of the response of commercial meters to

step changes in flow rate. A study of the essential components of the algorithm used in a meter leads to the conclusion

that the time constant cannot be less than the period of one cycle of the meter drive. The analytical, finite element and

experimental results all combine to show that the meters all respond in the period of one drive cycle but that the flow

step induces fluctuations in the meter output which decay under the influence of the flow tube damping. It is the

additional damping introduced in the signal processing to overcome these fluctuations which is responsible for the large

observed time constants. Possible alternative approaches are discussed.

r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

In many applications, flow meters are used to determine mean flow rate only, with a time-constant set by the user.

There is now however, an increasing need for flow rate measurements in flows which are required to change rapidly with

time. This includes short duration batch-flows; for example, delivery of liquid pharmaceuticals into ampoules or

perfume into bottles, with batching times less than 1 s. For these measurements, there is a growing need for mass flow

meters with a high performance dynamic response. A meter with this capability would also open-up new areas of

application, for example, measurement of fuel flow to gas turbine engines, where control loop response times of 20ms

may be required.

The dynamic response of measuring instruments is commonly expressed in terms of a ‘time constant’ which indicates

the time it takes for the instrument to respond to a small step change in the quantity being measured. There appears to

be very little published work dealing with the dynamic response of Coriolis meters. A search yielded two papers

referring to the response of Coriolis meters to a time dependent flow. One was in the form of a short paper by

Cheesewright and Clark (2000), where experimental data were presented to show that, even at pulsation frequencies as

low as 5Hz, there is a large error in the measured pulsation amplitude. The results also show that there is a significant

delay following the initiation of a time dependence in the flow before the output signal from the meter shows any
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change. The other paper, by Wiklund and Peluso (2002) reports the results of frequency response tests on a range of

different flow meters including a Coriolis meter. The results are expressed in the form of transfer functions and the

Coriolis meter is described as being characterized by ‘a critically damped second order lag with a fixed natural frequency

and damping ratio, together with a first order lag and a dead time both of which were found to vary with the user

selectable damping’. Dead times in the range 30–400ms are reported with a natural frequency of 2.39 rad/s and a

damping ratio of 1.0. These values suggest that an attempt to represent the meter response in terms of a single time

constant would lead to a value of the order of 1 s.

The effects of sinusoidal flow pulsations (at frequencies of the order of the meter drive frequency) in degrading the

accuracy with which a simple, straight tube, Coriolis meter can measure a mean flow rate have been investigated

analytically by Cheesewright and Clark (1998). The results of that investigation were confirmed by Finite Element

analyses, both for the simple straight tube meter and for a range of commercially available meters having different

geometries, Belhadj et al. (2000). These results were in close accord with the results of experiments on the same meters,

Cheesewright et al. (1999). In all these works it was demonstrated that the degradation of meter accuracy occurred

because of the generation of additional components in the sensor signals, caused by the flow pulsations. It was further

demonstrated that the degree of error depends on the details of the methods used to determine the phase difference

between the sensor signals and suggestions were made regarding methods by which the error in the indicated mean flow

rate could be reduced. No consideration was, however, given to the question of the extent to which useful information

about the time dependence of the flow rate could be recovered from the additional components in the sensor signals.

There are many factors which could influence the overall dynamic response of a Coriolis meter, ranging from the

mechanics of the motion of the meter tube to the electronics (signal processing) used to determine the phase difference

between the sensor signals and possibly even to the electronics of the feedback system used to maintain the meter drive.

The work of Wiklund and Peluso (2002), referred to above, suggests that the signal processing may be the most

important factor, with the user selectable damping having a major influence. Some degree of time delay in the meter

output reflecting changes in the flow is inevitable because the shortest period over which an estimate of the phase

difference can be made is one complete cycle of the meter drive. Thus, if an estimate is associated with the mid point of

the period over which it is taken then there must be a delay of at least half the period of a drive cycle. The make and

model of Coriolis meter tested by Wiklund and Peluso (2002) is not reported but it is likely to have had a drive

frequency of at least 100Hz which would suggest a minimum delay of the order of 5ms, which is significantly smaller

than the delays which they report.

It is suspected that, for virtually all currently available meters, it is the signal processing which has a controlling

influence on the overall response, but the details of the electronics are commercially confidential (to the meter

manufacturers). However, in any consideration of what is potentially possible in respect of the dynamic response, it will

be the motion of the meter tube relative to the period of one half of a drive cycle which will provide the ultimate

limitation. Thus, in the present work, attention will be concentrated on that factor.

2. Formulation and solution of the analytical model

The analytical treatment will use the model presented by Cheesewright and Clark (1998), namely a simple straight

tube meter, rigidly fixed at the two ends and driven at its lowest natural frequency.

2.1. Without internal damping

The transverse vibratory motion of the pipe and the fluid is represented by writing the displacement, u; as a function
of the distance, x; along the pipe from one end, and of the time, t: Writing force=mass� acceleration for the fluid and

recognizing that since u ¼ uðx; tÞ; du=dt ¼ ðqu=qtÞ þ ðqu=qxÞðdx=dtÞ ¼ ðqu=qtÞ þ V ðtÞðqu=qxÞ; the motion of the fluid is

described by

mf
q2u

qt2
þ 2mf V

q2u
qxqt

þ mf
dV

dt

qu

qx
þ mf V2q

2u

qx2
¼ l; ð1Þ

where mf is the mass of fluid per length of pipe, V ð¼ V ðtÞÞ is the longitudinal velocity of the fluid and l is the force per
length exerted on the fluid by the constraining pipe. Similarly, the motion of the pipe is described by

mp
q2u
qt2

þ EI
q4u
qx4

¼ �l; ð2Þ
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where mp is the mass per length of the pipe and E and I are respectively the Young’s Modulus and the second moment

of area of the pipe cross-section.

Eliminating l between Eqs. (1) and (2) gives the equation of motion of the combined system

ðmp þ mf Þ
q2u
qt2

þ EI
q4u
qx4

þ mf 2V
q2u
qxqt

þ
dV

dt

qu

qx
þ V2q

2u

qx2

� �
¼ 0: ð3Þ

For a meter of length x the boundary conditions with respect to x are

uð0; tÞ ¼ uðL; tÞ ¼ 0 and quð0; tÞ=qx ¼ quðL; tÞ=qx ¼ 0:

Eq. (3) assumes the neglect of axial tensions etc., but it should be noted that Paidoussis and Issid (1974) have suggested

that this is not a consistent treatment. They suggest that when such terms are included, the term

mf

dV

dt

qu

qx

in Eq. (3) should be replaced by

mf
dV

dt
ðL � xÞ

q2u
qx2

:

The first objective of the present work is the estimation of the (small) step response of the meter and it is not clear at this

stage of the work, whether the disputed term is significant in the estimation of that response.

Regardless of which form of the disputed term is adopted, Eq. (3) is similar to that solved by Raszillier and Durst

(1991), in the sense that the first two terms in Eq. (3) will have a dominant influence on the solution. Thus it is

reasonable to assume a solution of the form

uðx; tÞ ¼
XN
n¼1

WnðxÞqnðtÞ; ð4Þ

where the WnðxÞ are the mode shapes, obtained from the solution to the equation formed by setting the first two terms

in Eq. (3) equal to zero, and the qnðtÞ are usually referred to as generalized coordinates. Furthermore, the work of

Raszillier and Durst suggests that it should not be necessary to continue the summation beyond the first two or three

terms.

For the present boundary conditions, the mode shapes are given by

WnðxÞ ¼ sinhðbnxÞ � sinðbnxÞ þ an½coshðbnxÞ � cosðbnxÞ�;

where an ¼ ½sinhðbnLÞ � sinðbnLÞ�=½cosðbnLÞ � coshðbnLÞ� and the bnL are the solutions to cosðbnLÞcos hðbnLÞ ¼ 1: For
the case of V ¼ 0 the generalized coordinates are given by qnðtÞ ¼ sinðontÞ; where on is the natural frequency of the nth

mode of vibration and is defined by on ¼ ðbnLÞ2½EI=L4ðmp þ mf Þ�1=2:When the assumed form of solution is substituted

into Eq. (3), after some re-arrangement, the equation can be written as

0 ¼
XN
n¼1

o2
nWnðxÞqnðtÞ þ

XN
n¼1

WnðxÞ
d2qnðtÞ
dt2

þ
mf

ðmp þ mf Þ

� 2V
XN
n¼1

dWnðxÞ
dx

dqnðtÞ
dt

þ
dV

dt

XN
n¼1

dWnðxÞ
dx

qnðtÞ þ V2
XN
n¼1

d2WnðxÞ
dx2

qnðtÞ

 !
; ð5Þ

or, if the Paidoussis and Issid (1974) form of the equation had been used,

0 ¼
XN
n¼1

o2
nWnðxÞqnðtÞ þ

XN
n¼1

WnðxÞ
d2qnðtÞ
dt2

þ
mf

ðmp þ mf Þ

� 2V
XN
n¼1

dWnðxÞ
dx

dqnðtÞ
dt

þ
dV

dt
ðL � xÞ

XN
n¼1

dW 2
n ðxÞ

dx2
qnðtÞ þ V2

XN
n¼1

d2WnðxÞ
dx2

qnðtÞ

 !
: ð5aÞ
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Multiplying Eq. (5) (or Eq. (5a)) through by the general mode shape WmðxÞ; integrating with respect to x from x ¼ 0 to

x ¼ L and imposing the condition of orthogonality of normal modes gives, for mode m

0 ¼
@2qmðtÞ
@t2

þ o2
mqmðtÞ þ

mf

ðmp þ mf Þ
1R L

0 W 2
mðxÞ dx

2V
XN
n¼1

dqnðtÞ
dt

Z L

0

WmðxÞ
dWnðxÞ
dx

dx

� 	"

þ
dV

dt

XN
n¼1

qnðtÞ
Z L

0

WmðxÞ
dWnðxÞ
dx

dx

� 	
þV2

XN
n¼1

qnðtÞ
Z L

0

WmðxÞ
d2WnðxÞ
dx2

dx

� 	#
; ð6Þ

or, if the Paidoussis and Issid (1974) form of the equation had been used,

0 ¼
q2qmðtÞ
qt2

þ o2
mqmðtÞ þ

mf

ðmp þ mf Þ
1R L

0 W 2
mðxÞ dx

2V
XN
n¼1

dqnðtÞ
dt

Z L

0

WmðxÞ
dWnðxÞ
dx

dx

� 	"

þ
dV

dt

XN
n¼1

qnðtÞ
Z L

0

WmðxÞðL � xÞ
d2WnðxÞ
dx2

dx

� 	
þV2

XN
n¼1

qnðtÞ
Z L

0

WmðxÞ
d2WnðxÞ
dx2

dx

� 	#
: ð6aÞ

Eq. (6) (or Eq. (6a)) describes an infinite set of coupled equations for the generalized coordinates. The following

coefficients can be defined in terms of the mode shape integrals, which appear in these equations:

ym ¼
1

L

Z L

0

W 2
mðxÞ dx;cm;n ¼

Z L

0

WmðxÞ
dWnðxÞ
dx

dx;

wm;n ¼ L

Z L

0

WmðxÞ
d2WnðxÞ
dx2

dx; sm;n ¼
Z L

0

xWmðxÞ
dWnðxÞ
dx

dx:

These coefficients have been evaluated up to m ¼ n ¼ 6: Values of ym; cm;n and wm;n are given in Table 1 of Cheesewright

and Clark (1998) and it will be seen below that only the values of s2;1 and s2;2 (0.0006 and �22.9893) are needed in the

present work. A full table of values of sm;n is available from the authors. The work of Raszillier and Durst (1991) and

the extensions to that work by Raszillier et al. (1993), suggest that a good approximation can be obtained by

considering only the first two modes of the series. Introducing this approximation, Eq. (6) yields the following pair of

equations for the generalized coordinates q1 and q2 (in which the explicit designation of the dependent variable has been

dropped and terms, which are identically zero, have been omitted:

d2q1

dt2
þ o2

1q1 þ
mf

Ly1ðmp þ mf Þ
2c1;2V

dq2

dt
þ c1;2

dV

dt
q2 þ

V2

L
w1;1q1

� �
¼ 0; ð7Þ

d2q2

dt2
þ o2

2q2 þ
mf

Ly2ðmp þ mf Þ
2c2;1V

dq1

dt
þ c2;1

dV

dt
q1 þ

V2

L
w2;2q2

� �
¼ 0; ð8Þ

or

d2q2

dt2
þ o2

2q2 þ
mf

Ly2ðmp þ mf Þ
2c2;1V

dq1

dt
�
dV

dt
ðs2;1q1 þ ðw2;2 � s2;2Þq2Þ þ

V2

L
w2;2q2

� �
¼ 0: ð8aÞ

A study of the results of Raszillier and Durst suggests that for all practical Coriolis meters, q2 is between 100 and 1000

times smaller than q1:
Eq. (7) can be written as

d2q1

dt2
þ q1 o2

1 þ
w1;1mf V2

L2y1ðmp þ mf Þ

� �
¼ �

c1;2mf

Ly1ðmp þ mf Þ
2V

dq2

dt
þ
dV

dt
q2

� �
: ð9Þ

The solution to Eq. (9) is of the form

q1 ¼ C1;0 sinðg1tÞ þ C1;1 cosðg1tÞ þ fparticular integralg; ð10Þ
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where

g1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2
1 þ

w1;1mf V2

L2y1ðmp þ mf Þ

s
:

The meter is driven at a frequency g1; by a feedback system and this fact, together with the fact that q25q1 suggests that

Eq. (10) can be approximated as

q1 ¼ C1;0 sinðg1tÞ; ð11Þ

where the origin of the time scale has been chosen so that C1;1 ¼ 0:
Before Eq. (11) is substituted into Eqs. (8) and (8a) it is appropriate to examine the relative magnitudes of the

coefficients of the dV=dt terms in the two equations. In Eq. (8) the dV=dt term could be significant relative to the V

term for rapid changes of flow and we should retain the term. In Eq. (8a) however, both components of the coefficient

of the dV=dt term are two to three orders of magnitude smaller, even for rapid changes in flow. Thus, if the Paidoussis

and Issid form of the governing equation is followed, the dV=dt term can be ignored for the present problem.

Substituting from Eq. (11) into Eq. (8), this equation can be written as

d2q2

dt2
þ g22q1 ¼ �

C1;0c2;1mf

Ly2ðmp þ mf Þ
2Vg1 cosðg1tÞ þ

dV

dt
sinðg1tÞ

� �
; ð12Þ

where

g2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2
2 þ

w2;2mf V2

L2y2ðmp þ mf Þ

s
:

In the examination of the dynamic response of a Coriolis meter we need to explore the solution to Eq. (12) for the

case of

V ¼ V0 þ Hðt � t0ÞdV ; ð13Þ

where Hðt � t0Þ is the Heaviside unit function defined as Hðt � t0Þ ¼ 0 for tot0 and Hðt � t0Þ ¼ 1 for tXt0:
The solution to Eq. (12) under these conditions is

q2 ¼C2;0 sinðg2tÞ þ C2;1 cosðg2tÞ �
2c2;1C1;0g1mf cosðg1tÞ
Ly2ðmp þ mf Þðg22 � g21Þ

ðV0 þ Hðt � t0ÞdV Þ

þ
C1;0mf Hðt � t0Þ

Ly2ðmp þ mf Þðg22 � g21Þ

c2;1ðg2 þ g1Þ þ 2c2;1g1 cosðg2t � g2t0 � g1t0Þ
g2ðg2 þ g1Þ

�

�
c2;1ðg2 � g1Þ � 2c2;1g1 cosðg2t � g2t0 þ g1t0Þ

g2ðg2 � g1Þ

�
: ð14Þ

In Eq. (14) the constants C2;0 and C2;1 depend on whether the meter is driven at zero flow and then the flow is switched

on (at V0) or the flow is started and then the meter drive is switched on.

It is clear from Eq. (14) that, in the absence of damping, the solution does not predict any delay mechanism in the

response to a step change. It can also be inferred from this solution that the response to a flow impulse (period 51=g1)
would be merely an increase in the level of the g2 component in the sensor signals.

Commercial Coriolis meters do exhibit internal damping and estimates of the magnitude of that damping, expressed

as a percentage of the ‘critical’ damping, have been obtained both from tests in which the meter drive was suddenly

switched off and the decay of the tube motion was recorded, and from finite element computations of model meters.

Details of both of these estimates are given in a paper by Cheesewright et al. (2003). It is therefore necessary to revise

the present model of a simple straight tube meter to include the effects of damping.

2.2. With the inclusion of the effect of internal damping

Clough and Penzien (1975) describe two different mechanisms by which viscous (i.e. velocity dependent) damping can

occur in a beam. These mechanisms are described respectively as, a viscous resistance to transverse displacement of the

beam and a viscous resistance to straining of the beam material. However, the second of these is usually very much

smaller than the first and there is relatively little information on appropriate values of the coefficient which occurs in the

formulation of the mechanism. In addition, finite element simulations using the ANSYS program, normally only model

the first damping mechanism. Thus only the first mechanism will be considered and this adds an extra term to
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Eq. (2), giving

mp

q2u
qt2

þ EI
q4u
qx4

þ csI
q5u
qx4qt

¼ �l; ð15Þ

where cs is the coefficient of resistance to strain velocity.

Eliminating l between Eqs. (1) and (15) gives the equation of motion of the combined system including the effects of

material damping, but neglecting the influence of axial forces and the suggestions of Paidoussis and Issid (1974):

ðmp þ mf Þ
@2u

@t2
þ EI

q4u
qx4

þ csI
q5u
qx4qt

þ mf 2V
q2u
qxqt

þ
dV

dt

qu

qx
þ V2q

2u

qx2

� �
¼ 0: ð16Þ

When this equation is subjected to the solution procedure used for the undamped case, the equivalent of Eq. (6) is

0 ¼
q2qmðtÞ
qt2

þ o2
mqmðtÞ þ o2

m

cs

E

dqm

dt

þ
mf

ðmp þ mf Þ
1R L

0 W 2
mðxÞ dx

2V
XN
n¼1

dqnðtÞ
dt

Z L

0

WmðxÞ
dWnðxÞ
dx

dx

� 	"

þ
dV

dt

XN
n¼1

qnðtÞ
Z L

0

WmðxÞ
dWnðxÞ
dx

dx

� 	
þ V2

XN
n¼1

qnðtÞ
Z L

0

WmðxÞ
d2WnðxÞ
dx2

dx

� 	#
: ð17Þ

Assuming that the expansion can be truncated after the first two modes and introducing the previously defined symbolic

representations of the relevant mode shape integrals, the generalized coordinates, q1 and q2; can be represented by the

following pair of equations:

d2q1

dt2
þ o2

1q1 þ o2
1

cs

E

dq1

dt
þ

mf

Ly1ðmp þ mf Þ
2c1;2V

dq2

dt
þ c1;2

dV

dt
q2 þ

V2

L
w1;1q1

� �
¼ 0; ð18Þ

d2q2

dt2
þ o2

2q2 þ o2
2

cs

E

dq2

dt
þ

mf

Ly2ðmp þ mf Þ
2c2;1V

dq1

dt
þ c2;1

dV

dt
q1 þ

V2

L
w2;2q2

� �
¼ 0: ð19Þ

In order to maintain consistency with the solution for the undamped case, Eq. (18) can be re-written as

d2q1

dt2
þ g21q1 þ g21

cs

E

dq1

dt
þ

mf

Ly1ðmp þ mf Þ
2c1;2V

dq2

dt
þ c1;2

dV

dt
q2

� �
¼ 0; ð20Þ

where, as before

g1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2
1 þ

w1;1mf V2

L2y1ðmp þ mf Þ

s

and the o2
1 in the third term has been replaced by g21 because the difference between o1 and g1 is small and the third term

is small compared to the other terms in the equation.

The fact that the meter is driven at a frequency g1; via a feedback system, together with the fact that q25q1 suggests

that the solution to Eq. (20) can be approximated as

q1 ¼ C1;0 sinðg1tÞ; ð21Þ

where the origin of the time scale has been chosen so that C1;1 ¼ 0:
Substituting from Eq. (21) into Eq. (19) gives

d2q2

dt2
þ g22q2 þ o2

2

cs

E

dq2

dt
¼ �

C1;0c2;1mf

Ly2ðmp þ mf Þ
2Vg1 cosðg1tÞ þ

dV

dt
sinðg1tÞ

� �
; ð22Þ
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where, as before, g2 is defined by

g2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2
2 þ

w2;2mf V2

L2y2ðmp þ mf Þ
:

s

Substitution of typical values into Eq. (22) suggests that the difference between o2 and g2 is less than 0.1% of their value

so that we may replace the o2
2 in the third term by g22:

In order to simplify the discussion of the solution of Eq. (22) under the influence of rapid flow transients it is

convenient to define

K2 ¼
C1;0c2;1mf

Ly2ðmp þ mf Þ
;

so that Eq. (22) can be written as

d2q2

dt2
þ o2

2

cs

E

dq2

dt
þ g22q2 ¼ �K2 2Vg1 cosðg1tÞ þ

dV

dt
sinðg1tÞ

� �
: ð23Þ

The available experimental data on the magnitude of the material damping are largely expressed in terms of the ratio,

a1; of the actual damping to the critical damping for the first mode motion (e.g. Cheesewright et al., 2003; Hulbert et al.,
1995; Cunningham, 1994). From Eq. (20) it can be seen that the critical damping is obtained for the first mode motion

when cs ¼ 2E=g1 so that in general cs ¼ 2a1E=g1: Substituting into Eq. (23) gives

d2q2

dt2
þ 2a2g2

dq2

dt
þ g22q2 ¼ �K2 2Vg1 cosðg1tÞ þ

dV

dt
sinðg1tÞ

� �
; ð24Þ

where a2 is the damping ratio for the second mode motion, defined by a2 ¼ a1g2=g1:
Before examining the effect of a step change in the flow rate it is of interest to examine the influence of material

damping on the normal behaviour of the meter. While it is possible to obtain an exact solution to Eq. (24), it is more

convenient to make an approximation on the basis of typical values of a2; g2 and g1: The sources noted above suggest

that a1 is typically between 4.5� 10�3 and 3� 10�4. For the range of commercial meters which the authors have tested,

g2 is between 103 and 1.4� 104 and g2 for the simple straight tube meter is also within this range (typical values of g1
range between 5� 102 and 5� 103). The solution to Eq. (24) is made easier if we write it as

d2q2

dt2
þ 2a2g2

dq2

dt
þ g22ð1þ a22Þq2 ¼ �K2 2Vg1 cosðg1tÞ þ

dV

dt
sinðg1tÞ

� �
; ð25Þ

and the error introduced by the additional term is completely negligible.

For a steady flow velocity, V ; the solution to Eq. (25) is given by

q2 ¼ e�a2g2t½C2;0 sinðg2tÞ þ C2;1 cosðg2tÞ�

� 2Vg1K2
2a2g2g1 sinðg1tÞ þ ðg22 þ a22g

2
2 � g21Þcosðg1tÞ

ð1þ a22Þ
2g42 þ 2ða22 � 1Þg22g

2
1 þ g41

: ð26Þ

On the basis of the typical values of a2; g2 and g1 noted above, this can be further approximated to

q2 ¼ e�a2g2t½C2;0 sinðg2tÞ þ C2;1 cosðg2tÞ� �
2Vg1K2

ðg22 � g21Þ
cosðg1tÞ; ð27Þ

and we see that to a high degree of approximation, the only effect of the damping on the steady flow performance of a

meter is to cause the terms in sinðg2tÞ and cosðg2tÞ; which arise from the initial conditions, to decay (the damping will, of

course, increase the power input required to drive the meter). This behaviour is in agreement with the results of finite

element simulations of steady flow through meters with damping.

Returning to the problem of the step response of a meter with damping, we can retain the approximation made to the

last term on the l.h.s. of Eq. (24) and we are thus interested in the solution to Eq. (25) for the case where V ðtÞ ¼
V0 þ Hðt � t0ÞdV :
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The solution now is

q2 ¼ e�a2g2t½C2;0 sinðg2tÞ þ C2;1 cosðg2tÞ� � 2½V0 þ Hðt � t0ÞdV �g1K2

�
2a2g2g1 sinðg1tÞ þ ðg22 þ a22g

2
2 � g21Þcosðg1tÞ

ð1þ a22Þ
2g42 þ 2ða22 � 1Þg22g

2
1 þ g41

�
2Hðt � t0ÞdVg1K2e

�a2g2t

ð1þ a22Þ
2g42 þ 2ða22 � 1Þg22g

2
1 þ g41

� ½ðg22ð1þ a22Þ þ 2g2g1 þ g21Þða2g2 sinðg2ðt � t0Þ þ g1t0Þ þ ðg2 � g1Þcosðg2ðt � t0Þ þ g1t0ÞÞ

þ ðg22ð1þ a22Þ � 2g2g1 þ g21Þða2g2 sinðg2ðt � t0Þ � g1t0Þ þ ðg2 � g1Þcosðg2ðt � t0Þ � g1t0ÞÞ�: ð28Þ

Eq. (28) looks very complicated but when it is examined carefully it can be seen that the terms on the first line represent

decaying oscillations at frequency g2 which arise from the start-up conditions; the term on the second line is identical to

that obtained in the damped steady state solution (Eq. (26)) except that V is replaced by V0 þ Hðt � t0ÞdV ; and the

remaining terms represent decaying oscillations at frequency g2; arising from the step. When Eq. (28) is simplified on the

basis of the typical values of a2; g2 and g1 the solution becomes

q2 ¼ e�a2g2t½C2;0 sinðg2tÞ þ C2;1 cosðg2tÞ� �
2½V0 þ Hðt � t0ÞdV �g1K2

ðg22 � g21Þ
cosðg1tÞ

�
2Hðt � t0ÞdVg1ðg2 � g1ÞK2e

�a2g2t

g2
ðcosðg2ðt � t0Þ þ g1t0ÞÞ þ

ðg2 � g1Þ
ðg2 þ g1Þ

cosðg2ðt � t0Þ � g1t0Þ
� �

: ð29Þ

If the Paidoussis and Issid formulation had been followed it would not have changed the essential characteristics of

Eqs. (28) and (29).

The solutions show that, within the level of approximation used above, the ‘Coriolis’ term is not subject to any

damping although the terms at the g2 frequency are subject to damping. The physical explanation of this result is that

the ‘Coriolis’ term is driven by the first mode motion, which we have assumed to be unaffected by damping (because of

the drive). The extent to which the above result will be reproduced in real meters may be affected by the details of the

feedback mechanism used to generate the drive signal but these details are commercially confidential and are not

available to the authors of this study.

The above analysis has been performed for the simplest possible straight tube meter, driven at its lowest natural

frequency. Since a majority of commercially available meters do not have this geometry, it is important to examine the

influence of the tube geometry. The finite element models of commercial meters, described by Belhadj et al. (2000) can

be used for such an examination.

3. Formulation and solution of the finite element model

Full details of the finite element treatment, the models of a number of different commercially available meters and of

the method of solution are given in Belhadj et al. (2000). The general purpose ANSYS code was used and the 3-D mass,

stiffness and damping elements were based both on the steady flow work of Stack et al. (1993) and the theoretical

equations of motion given by Paidoussis and Issid (1974). The detailed behaviour of the flow within the tube was

assumed to have a negligibly small effect on the overall response, so the fluid was treated as a frictionless solid mass

travelling along the tube at a velocity which could vary with time. This time dependence was imposed by using the

‘‘element birth and death’’ feature of ANSYS.

The meters which were modelled in the work comprised a straight single tube meter and three twin tube meters which

are referred to as the a-tube meter, the O-tube meter and the B-tube meter. For all four meters the physical dimensions
of the tube and the material properties were supplied by the respective meter manufacturer. The models did not include

any additional components which may be attached to specific points on the tubes of the commercial meters. The

straight tube meter was only partially based on a commercial meter and was configured to enable a direct comparison

between the finite element predictions and the analytical predictions. The accuracy of the finite element modelling was

demonstrated by very close agreement between the predicted resonant mode frequencies and those determined

experimentally, as reported by Belhadj et al. (2000) and by Cheesewright et al. (2003).

The computations of the step response were based on a ‘‘standard’’ flow rate of 2.62 kg/s for all of the meters. Three

flow steps were considered for each meter, zero flow to the standard flow, the standard flow to zero and a small step up

from the standard flow. Although all the meters were nominally 25mm, the actual internal diameters of the tubes varied

from one meter to another. The flow velocities corresponding to the ‘‘standard’’ flow were 7.0, 4.41, 7.21 and 5.44m/s

for the straight tube, the a-tube, the O-tube and the B-tube meters, respectively. All the transient calculations were

started by imposing a pure driven motion (i.e. without any Coriolis distortion). The first stage of the calculations was
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performed with a high computational damping (damping ratio of 0.5% which is 10� the ANSYS default damping) and

were run until the effect of the initial transients had decayed to a negligible amplitude (45–85 cycles of the driven motion

depending on the particular meter). The output of the first stage calculation was recorded and was used to start the

main transient calculation, which was performed for a number of different values of the damping ratio (including the

experimentally determined value for each meter, as reported by Cheesewright et al. (2003). The displacement time

histories of the sensor mounting points were extracted from the main calculation and these time histories were then

processed, using the algorithms that were developed at Brunel for processing experimental data, to give time histories of

the phase difference between the two simulated sensor signals. Segments of the displacement time histories were also

subjected to spectral analysis.

4. Experimental test facility

The flow test facility is powered by a positive displacement pump, driven at a constant speed, which delivers a flow of

8.7 kg/s (water) at a pressure of 20 bar. The flow to the test section is delivered via a high resistance pipe section and the

flow rate is controlled (in the range 0.2–8.7 kg/s) by bleeding off a part of the flow. The steady state pressure varied with

flow rate and was in the range 0.2–1.1 bar. The test section comprises a bypass, where the flow is controlled by a valve

and/or a burstable diaphragm, and a main section where the meter under test is mounted between a specially modified

electro-magnetic flow meter and a variable area orifice. Schematic representation of the arrangement is shown in Fig. 1.

Two methods are provided for generating ‘step’ changes in flow rate. In the first, a variable area orifice plate is moved

at speed across the flow, either increasing or decreasing the effective orifice area and hence the flow rate. This

mechanism is located just downstream of the Coriolis meter under test and it allows for relatively large ‘step’ changes in

flow e.g. from 0.2 to 0.8 kg/s over intervals which can be as small as 4ms.

However, the orifice plate device generates considerable mechanical vibration while producing the step change in

flow. The second method uses the sudden opening of a by-pass line to produce smaller reductions in the flow rate

through the meter. The sudden opening is produced by the bursting of a thin plastic diaphragm covering the free end of

the liquid filled by-pass. The bursting is initiated by applying a sudden discharge of electrical energy through a high

resistance coil in contact with the diaphragm. This mechanism produces relatively slow ‘steps’ (approximately 100ms)

with very low levels of vibration.

Additional instrumentation is provided to enable full characterization of the dynamic features of the flow step. A

commercial electromagnetic flow meter provides a clear indication of the time history of the step. The meter is excited
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a   accelerometer b  by-pass c  Coriolis test meter 

d  burstable diaphragm m  electromagnetic flowmeter o  variable area orifice

p  pressure gauge pt  pressure transducer pu  pump 

rm  reference flowmeter  w  weigh-tank s   sump 

Fig. 1. Flow test facility.
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by a continuous DC magnetic field which gives a very good dynamic response but at the expense of a poor steady state

response due to polarization effects at the sensor electrodes. A pressure transducer is located just upstream of the two

flow meters and accelerometers are mounted adjacent to the flow step mechanisms. The accelerometer signals are

arranged to have a small dc component and the first zero crossing is used to trigger the collection of data and for the

synchronization between the two computers used for data logging.

The first computer logs four channels of data, namely: pressure, accelerometer signal, flow rate indicated by the

electromagnetic meter and the flow rate indicated by the Coriolis meter under test. This latter signal is taken either from

the current output or the frequency output depending on the advice of the meter manufacturer as to which they expect

to give the cleanest, fastest response. The sampling rate on this first computer is typically 51.2 kHz for a 5 s record. The

second computer logs the two sensor signals from the test meter at a sampling rate of 500 kHz for a 1.95 s record. The

logging programs and the subsequent off-line processing are performed using the LABVIEW system, with the two

sensor signals yielding an independent time history of the phase difference.

In general the two sensor signals contain components at a number of different frequencies although the dominant

component is that at the meter drive frequency. However, it has been clearly demonstrated by Cheesewright et al. (1999)

and by Clark and Cheesewright (2003) that it is only the phase difference between the drive frequency components of

the signals which is proportional to the mass flow rate. The computation of the phase difference between the signals can

only be made over a period of time which corresponds to an integer number of cycles of the drive frequency, because a

computation over any other period would require an a priori knowledge of the shape of the signal waveform at that

frequency. Such a knowledge cannot be available and indeed it is flow rate dependent. Thus the shortest period over

which an estimate of the phase difference can be made is one drive cycle and this imposes a lower limit on the effective

response time of a meter. It is true that estimates could be obtained at a rate greater than is implied by this limit, if the

estimates, each taken over a period of one drive cycle, use overlapping periods, but such estimates are not independent

and the lower limit on the meter response time remains the period of one drive cycle. Although there may be

circumstances where more closely spaced estimates are desirable, all the time histories of the phase difference in the

present work are based on non-overlapping periods.

All our signal-processing algorithms were developed primarily to investigate the dynamic response of meter flow

tubes. This was achieved by processing independently, either signals logged directly from flow tube sensors or simulated

signals obtained from analytical and finite element studies. In order not to distort the information on the response, no

filtering was used.

5. Results

For the purpose of comparing the analytical predictions with the finite element predictions, for the simple straight

tube meter, the analytical predictions of the sensor signals were evaluated to give time histories equivalent to those

obtained from the finite element simulations. In the evaluation it was assumed that t0 was large so that the oscillations

arising from the start-up conditions had completely decayed before the step was initiated. The analytical and finite

element data streams were then subjected to identical processing to yield the time histories of the phase difference, using

algorithms developed at Brunel for processing data obtained from our experiments.
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Fig. 2. Flow step from zero to 2.52 kg/s, damping 0.15%. (a) Analytical prediction. (b) Finite element prediction.
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In order to facilitate comparisons between the analytical and finite element predictions, and experimental data, for

different meters, the results are all expressed in terms of mass flow rates, assuming that there is a linear relationship

between phase difference and mass flow rate. For the analytical and finite element data the empirical coefficient defining

this linear relationship was determined from the mass flow rate used in the generation of the data during a period of

steady flow and the mean phase difference obtained over that period. For the simple straight tube meter the coefficients

derived from the analytical and the finite element results agreed within better than 1%. The experimental tests on each

different meter included calibration tests at three different flow rates and the calibration coefficients were determined

from the results of these tests.

Fig. 2(a) and (b) show a comparison of the response to a step as predicted by the analysis and the finite element

simulation, respectively, using in both cases the experimentally determined value of the damping factor (0.15%). It

should be noted that the analytical step is instantaneous, as given by the Heaviside step function where as the finite

element step occurs over one calculation time step (50 ms). The two predictions of the phase difference (mass flow rate)

show good agreement with respect to the decay rate, with the analytical prediction showing a larger initial amplitude of

fluctuation as might be expected from the above noted difference in the detailed representation of the steps.

Figs. 3(a) and (b) show the effect on the response of increasing the damping. The data were obtained from the

analytical solution but the trends would have been exactly the same if the data had been taken from finite element

simulations of the straight tube meter. Fig. 3(a) uses data evaluated for a damping ratio of 0.05% (i.e. 3 times smaller

than that used in Fig. 2(a)) and Fig. 3(b) uses data for a damping ratio of 0.45% (i.e. 3 times larger).

It was not considered to be practicable to attempt an analytical solution for a slower step but the finite element

simulation was repeated for a step which occurred linearly over a period equal to four cycles of the meter drive. Fig. 4

shows the result of the finite element simulation (damping ratio 0.15%) and this may be compared to the simulation of a

ARTICLE IN PRESS

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0 0.1 0.2 0.3 0.4 0.5

Time (s)

M
as

s 
flo

w
ra

te
 (

kg
/s

)

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0 0.1 0.2 0.3 0.4 0.5

Time (s)

M
as

s 
flo

w
ra

te
 (

kg
/s

)

(a) (b)

Fig. 3. The effect of changing the damping, theoretical prediction. (a) Damping 0.05%. (b) Damping 0.45%.
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Fig. 4. Response to a ‘slow’ step, finite element prediction, damping 0.15%.
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Fig. 5. Finite element predictions of response to a fast step. (a) a-Tube meter, experimentally determined damping. (b) O-Tube meter,
experimentally determined damping.
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Fig. 6. Experimentally measured response to a fast step (5ms). (a) Meter having a drive frequency of about 100Hz. (b) Meter having a

drive frequency of about 800Hz.
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Fig. 7. Experimentally measured response to a slow step (approx. 100ms) meter having a drive frequency of approximately 100Hz.

R. Cheesewright et al. / Journal of Fluids and Structures 18 (2003) 165–178176



fast step shown in Fig. 2(b). It is clear that no ‘noise’ is apparent on the time history of the phase difference (mass flow

rate).

Figs. 5(a) and (b) show the finite element predictions for the responses of the a-tube and the O-tube meters,

respectively, to a ‘fast’ step (one finite element calculation time step), using in each case the experimentally determined

damping factor. It is clear that the nature of the response is not significantly affected by the meter geometry.

The analytical and finite element predictions can be compared with experimental measurements of the response made

on a range of commercial meters. Figs. 6(a) and (b) show two examples of meter response to a fast step (5ms duration).

The data presented in Fig. 6(a) were obtained with a meter having a relatively low drive frequency (in the region of

100Hz) while those in Fig. 6(b) were obtained with a meter having a much higher drive frequency (in the region of

800Hz). The respective spacing of the Coriolis meter data in the two figures reflects the fact that one estimate of the

phase difference (and hence of the flow rate) is obtained for each cycle of the meter drive. With the lower frequency

meter the step is completed within less than one drive cycle, but with the higher frequency meter it extends over

approximately three drive cycles. For both meters the noise level after the step is significantly greater than would have

been predicted by a finite element simulation of a step of the same speed. That this was due to the mechanical vibrations

caused by the operation of the variable area orifice device was confirmed by examination of the time history of the

signal from an accelerometer attached to the apparatus.

The significance of any vibration introduced by the mechanism used for the creation of a step is further emphasized in

Fig. 7 which shows the response of a meter to slow step initiated by the bursting of a diaphragm. This mechanism

produces no significant mechanical vibration and the response shows no significant increase in the noise level on the

Coriolis meter output signal, after the step.

6. Discussion

The data presented in Figs. 2–4 are only a part of the results derived from the analysis and the finite element

modelling for the simple straight tube meter. Over the totality of the results, the agreement between the predictions of

the two approaches is very good. A comparison of Figs. 3(a) and (b), together with Fig. 2(a) is interesting because it

shows, as expected, that increasing the damping affects the rate of decay of the fluctuations in the computed flow rate.

These fluctuations which appear to be at frequencies in the range of 40–60Hz actually arise from the sensor signal

components at the Coriolis frequency which are generated by the step. In the calculation of the phase difference at the

drive frequency (between the simulated sensor signals), the Coriolis frequency component generates a beat with a

frequency equal to the difference between the Coriolis frequency and the drive frequency. This frequency is much

greater than the frequency at which the phase difference data are generated (i.e. the drive frequency), and so aliasing

occurs, giving the impression of a lower frequency. The calculation time step used in the finite element simulation was

sufficiently small for the simulated sensor signals to have shown a component at the next highest mode frequency if one

had been present. Spectra of the simulated sensor signals immediately after the step, clearly show the component at the

Coriolis frequency but they do not show anything at the next higher mode frequency. This provides an additional

justification of the decision to truncate the analytical solution after the second mode.

For the complex geometry meters, the distribution of the modal frequencies was more complicated and for at least

one of the meters, the finite element simulation showed indications that the step may generate components at

frequencies other than the Coriolis frequency. However, these components were very much smaller than those at the

Coriolis frequency.

In assessing the results presented in this paper for commercial meters, it is important to remember that our signal

processing algorithms were developed primarily to investigate the dynamic response of meter flow tubes. This was

achieved by processing independently the signals logged directly from the flow tube sensors. In order to preserve the

information available within the phase difference data, no filtering was used. Further, because these data were all post-

processed, the computational time required to produce the phase difference estimates was not an issue.

The signal processing requirements for the user-output of a commercial meter are significantly different from those

specified above. In particular, filtering may be used to remove signal noise and the computational time required for on-

line processing is a significant issue. Also, it is common for blocks of data from several (or many) drive cycles to be used

in the estimation of the phase difference. In general, the differences observed between the user-output response to a fast

flow step and the flow tube responses reported herein are as follows: the user-output shows a delay in the onset of the

step, a lengthening of the step duration, and no fluctuations following the step.

The analytical and finite element results, together with the experimental data on the response of commercial meters to

a fast step, all combine to emphasise that the time constant for the mechanical response of Coriolis meters is the period

of one cycle of the drive. The very much larger time constants which are observed from the indicated output of
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commercial meters (as indicated for example by Wiklund and Peluso, 2002) arise from constraints introduced by

particular algorithms used for the estimation of the phase difference and from other characteristics of the signal

processing. It would appear to be probable that a significant part of the increase in the time constant arises from

damping introduced during the signal processing to suppress the fluctuations caused by the Coriolis frequency

components in the sensor signals. It is likely that the overall design of a meter will always involve a compromise between

absolute accuracy (freedom from spurious fluctuations) and speed of response. For many applications the emphasis is

towards a high accuracy of mean flow indication over periods of many drive cycles. The present work has established

the ultimate response time limitations.

7. Conclusions

The time constant of a Coriolis meter cannot be less than the period of one cycle of the meter drive because this is the

shortest period over which a meaningful estimate of the phase difference between the sensor signals can be made.

The response of the meter sensor signals to a step change in mass flow rate comprises two parts. That part of the

signal which is at the drive frequency and is responsible for the phase difference (linearly proportional to the mass flow

rate) is, to a high degree of approximation, independent of the magnitude of the internal damping. There is an

additional component of the response which is predominantly at the Coriolis frequency and this part decays

exponentially under the influence of the internal damping.

The effective time constant of commercial Coriolis meters is generally many times larger than the period of one drive

cycle because of the particular algorithms used in the determination of the phase difference and because of additional

computational damping introduced to minimize the influence of the non-drive frequency components of the sensor

signals.

For changes in flow rate which occur continuously over periods which are several times larger than the period of one

drive cycle the Coriolis meter has the potential to measure a true time history of the change in flow rate.
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